If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x-820=0
a = 1; b = 10; c = -820;
Δ = b2-4ac
Δ = 102-4·1·(-820)
Δ = 3380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3380}=\sqrt{676*5}=\sqrt{676}*\sqrt{5}=26\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-26\sqrt{5}}{2*1}=\frac{-10-26\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+26\sqrt{5}}{2*1}=\frac{-10+26\sqrt{5}}{2} $
| 92=6x-3(4) | | 17=4-(z+10) | | 12.68/1000=x/80,000 | | 1.75x=1.25 | | 4q+–2=–14 | | 14-x=5(3-x) | | (6x+2)=4 | | 92=4x+6-3 | | 132-y=182 | | 92=4x+(6-3) | | 5v-42=13 | | 179=-u+81 | | 5x/6-28/6+x/30=x/5-2 | | 92=6(4x-3) | | 14+x=5(3+x) | | 32.47+33.18=y | | -w+287=82 | | 92=6-3(4x) | | -1/9x-2+2/3x=3 | | 8.25+y=16.21 | | X+14=5(3x) | | 3x-x=7+1 | | 3x-6/4=13x-4/10 | | 5.8q-2.4-5.2q=-0.4q-5.2 | | 1.7x-0.9(x-8)=0.8(x-9) | | .12(4200-x)=3000 | | .12(4200)=3000-x | | 2−5x=7−x | | 3n-8=24 | | 1/3=1/5+f | | 15=7t+4t^2 | | 3z+5/3=7z-5/7 |